Pavlos Papadopoulos

Logo


Associate Lecturer / PhD Student

Cybersecurity, Distributed Ledger Technology, Privacy-Preserving Machine Learning

Edinburgh Napier University

View My LinkedIn Profile

View My Google Scholar Profile

View My University Portfolio

View My GitHub Profile

PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN

Abstract: We introduce PyVertical, a framework supporting vertical federated learning using split neural networks. The proposed framework allows a data scientist to train neural networks on data features vertically partitioned across multiple owners while keeping raw data on an owner’s device. To link entities shared across different datasets’ partitions, we use Private Set Intersection on IDs associated with data points. To demonstrate the validity of the proposed framework, we present the training of a simple dual-headed split neural network for a MNIST classification task, with data samples vertically distributed across two data owners and a data scientist.

PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN



ICLR 2021 Workshop on Distributed and Private Machine Learning (DPML 2021); https://dp-ml.github.io/2021-workshop-ICLR/

For more details: PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN.